from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor

加载波士顿房价数据集

boston = datasets.load_boston()
X = boston.data
y = boston.target

将数据集随机划分为训练集和测试集,测试集占比为 30%

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

创建随机森林回归器模型

reg = RandomForestRegressor()

使用训练集对模型进行拟合

reg.fit(X_train, y_train)

使用测试集对模型进行评估,并输出均方误差

y_pred = reg.predict(X_test)

print(y_pred)


from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

加载鸢尾花数据集

iris = datasets.load_iris()
X = iris.data
y = iris.target

将数据集随机划分为训练集和测试集,测试集占比为 30%

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

创建随机森林分类器模型

clf = RandomForestClassifier()

使用训练集对模型进行拟合

clf.fit(X_train, y_train)

使用测试集对模型进行评估,并输出准确率

y_pred = clf.predict(X_test)
print(y_pred)

标签: none

添加新评论