from keras.layers import MaxPooling2D

卷积层1

model = Sequential()
model.add(Conv2D(filters=16, kernel_size=3, strides=3, activation='relu', input_shape=(84, 84, 1)))

池化层1

model.add(MaxPooling2D(pool_size=2, strides=2))

卷积层2

model.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu'))

池化层2

model.add(MaxPooling2D(pool_size=2, strides=2))

展平上述池化层,隐藏层神经元128个,输出10分类。

from keras.layers import MaxPooling2D,Flatten
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.summary()


https://alax.zone/usr/uploads/2023/04/438161756.rar

标签: none

添加新评论