8.6.2 决策树算法原理与Sklearn 实现
import numpy as np
from sklearn import tree
X = np.array([[0,0,0],[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]])
y = [0,1,1,1,2,3,3,4]
clf = tree.DecisionTreeClassifier()
clf.fit(X,y)
clf.predict([[1,0,0]])
import numpy as np
from sklearn import tree
X = np.array([[0,0,0],[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]])
y = [0,1,1,1,2,3,3,4]
clf = tree.DecisionTreeClassifier()
clf.fit(X,y)
clf.predict([[1,0,0]])
from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
课程环境构建指南:
0、查看conda虚拟环境,如何查看conda中的虚拟环境
https://www.zhangshilong.cn/work/208169.html
1、修改Jupyter Notebook工具的默认工作目录为 C:\AIMaterial
https://zhuanlan.zhihu.com/p/48962153/